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Moments of inertia and the shapes of Brownian paths

F Fougere} and J Desbois}

Division de Physique Théorique§, Institut de Physique Nucléaire, F-91406, Otsay Cedex,
France

Received 13 July 1993

Abstract. We compute the joint probability law of the principal moments of inertia of Brownian
paths (open or closed), using constrained path integrals and random matrix theory. The case of
two-dimensional paths is discussed in detail. In particuiar, we show that the ratio of the average
values of the largest and smallest moments is equal to 4.99 (open paths) and 3.07 {closed paths).
We also present results of numerical simulations, which include investigation of the relationships
between the moments of inertia and the arithmetic area enclosed by a path.

The shape of a typical random walk is far from spherical, as was first noticed long ago [1].
The precise amount of this anisotropy is likely to be of importance in the hydrodynamics
of dilute polymer fluids, especially for times less than the largest relaxation time of a single
chain; in this regime, the relevant variable is the instantaneous shape of the molecule,
rather than an average over all the orientations that the latter takes over a longer period
of time [2,3]. Indeed the velocity spectra of certain laminar polymeric flows exhibit
fluctuations which are manifestly non-turbulent; it has been argued [4] that these velocity
fluctuations can be accounted for if one drops the assumption of a spherical polymer
configuration, replacing it with a prolaie ellipsoidal ansatz, It is clear that the motion
of an elongated molecule will be somewhat different from that of a spherical one, because
the flow will make it flip around itself. As to the origin of this prolate shape, it cannot
be attributed wholly to a dynamical effect, since in some of the flows considered in [4]
no deformation of spherical molecules is expected. Hence non-sphericity must already be
present at the static level (though the precise instantaneous shape of the molecule is of
course affected by the flow, e.g. the ellipscid can compress and stretch along its axis).
Thus an obvious prerequisite of the phenomenological description of polymer flows is the
knowledge of the average shape of a chain at rest.

In order to get information on the latter, a quantitative measure of ‘shape’ is needed. The
best candidate is the inertial tensor T, or more precisely T up to the orientations of the chain,
i.e. the set of its eigenvalues Ay,...,Ay. However, the computation of their probability
law P(A;, ..., Ag) is in general a difficult task. The problem is greatly simplified when one
adopts the less ambitious approach of defining shape using only polynomial invariants of T,
namely the symmetric polynomials of A, ..., A4, the simplest example of which is of course
tr(T) = R?, the square radius of gyration of the chain. A variety of results conceming the
distributions of R? [5] and its orthogonal components [6-8] in fixed or random axes has
been obtained in 4 = 3, and linear combinations of those components have been used to
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investigate the anisotropy of random walk chains [9]. Combining R? with other invariants
of T, it is possible to improve on this and provide better characterizations of the shape
of a walk, defining quantities known as asphericity, acylindricity, etc {10-12], the average
values of which are more easily computed than those of the eigenvalues themselves. For
instance, the average asphericity of a Brownian path is known in any dimension [11, 12]
and may be compared with simulation results {9-15]; the ratios of the average values of the
principal moments of inertia A; have been computed numerically in d = 3, for paths either
open or closed [14, 15]. The more difficult problem of the self-avoiding path was tackled
in {12] through renormalization group methods and the invariants computed in dimension
4 — ¢ ; the excluded-volume effects have also been studied numerically [3,12-15]. As
regards the A; themselves, their law has been expressed analytically in 4 = 2 for closed
paths [16,27], whereas in higher dimensions only numerical or asymptotic (in 1/d) results
have been obtained so far [17].

Here we address the issue of determining the probability law P(iy,...,4s) of the
moments of inertia of a Brownian path, open or closed. Part of this law can easily be
deduced from the fact that T is a random symmetric real matrix. We then obtain, using
a path-integral representation, the whole law, from which we deduce the integrated laws
P(hy —A.) (@ = 2, Ay (1) being the largest (smallest) eigenvalue of T) and Q(R?);
these laws may be computed numerically and exact moments and asymptotic behaviours
may be extracted. Furthermore, it turns out that in two dimensions the ratio {(AL)}AA_},
which obviously constitutes a straightforward measure of anisotropy, may be computed
exactly . All our results are compared with simulations obtained by generating (open or
closed) random walks on a lattice. We also numericaily examine the law of the arithmetic
area enclosed by a path and argue that the latter is not unrelated to the distribution of the
moments of inertia.

We first address the problem in an arbitrary number of dimensions 4 and consider the
inertial tensor T = (¥;),1 < i, j < d of an open Brownian path of length ¢ (ie. a
continuous map r : [0, /] - RY), The probability distribution P°(T) can be written as a
constrained path integral 13]:

rity=r'

P(T)=N f dr'drg f Dr &~ b7 [T5(/,)8(9) (1)

r{0)=0 i€

where N is a normalization constant, and

1 t 4
Jij = n j; dv(xi(t) — xGi) (% (r) ~ xgy) — Tjj g= -:-fo drr{t) —r¢ (2)

where x; and xg; are the components of r and rg; the diffusion constant is taken equal
to 1.
Using translational invariance we rewrite (1) in the more symmetric form
ri)=rg

P(T)=N f dradirs f Dre~h ™™ T 5(£")6%(g"™) 3

(0=t y ]

(the constraints f,.i,o’ and g'? are obtained by setting g = 0 in (2)).

The inestial tensor T of the random path r is a random positive symmetric matrix;
moreover, the rotational invariance of the distribution of the Brownian paths ensures that
the matrices T make up an orthogonal ensemble. This ensemble is obviously not the so-
called ‘Gaussian orthogonal ensemble’ (GOE) [19] since the law of the Ti;'s is not Gaussian
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and they are not all independent. However, it shares with GOE a general property of
orthogonal ensembles, namely the well known ‘level repulsion’ [19]. One can indeed
perform in (3) the change of variables (Ti;) = (h(,..., 22,612, ..., 64-1,4), where the A;’s
are the d eigenvalues of T and the &;; are the d(d — 1)/2 angles involved in the rotation
diagonalizing 7. A Jacobian will then show up in the expression of P°(T), namely

83T 1...8T 40T 2... 0T34
Ay ... 00y 06 2...88 14

which is a polynomial of degree d(d — 1}/2in X, ..., A4 since the derivatives with respect
to Ay, ..., Ag vield d columns involving no A;’s, and the remaining columns are linear in
the latter. Now it is clear that this polynomial will vanish whenever two of the eigenvalues
are equal, because in that case the change of variable is ambiguous, only defined up to a
rotation in the (at least) two-dimensional corresponding eigenspace; hence the Jacobian is
just

[T =27 612, 0amra)
i<j

where J' is in general a complicated function, (The prefactor is what is generally referred
to as level repulsion. Let us emphasize again the fact that such a prefactor occurs in
the distribution of the eigenvalues of any orthogonal ensemble of random matrices; as a
consequence, it would also be present in the law of the inertial tensor of self-avoiding walks,
Levy flights, etc.) In our case however the form of J’ is irrelevant: since the I'’s form an
orthogonal ensemble, there is in the integrand no further dependence on the angles besides
J'. Hence the angular integration reduces to a numerical factor which may be absorbed
into the constant N, finally yielding the law of the eigenvalues:

PG s da) = N [Tl ——A.,lfd"mddrg

i<t

ri=rg ‘.
X f Dr c-—j},r’(r]dt 1—[5(3-1:3.&1 _ f’:'!l))ad(gﬂ))) (4)
.

{O)=r4 k<t

f,“} is obtained by setting rg = 0, T = Oin f;; (2)). The identity §(x) = 1/2x [*2° dor e
enables one to rewrite (4) in terms of the evolution operator in a harmonic potential:

PO, d) = N1 —Ajlf[d,u]d"rﬁddrg

i<f

ri=rs ' o2 ; i
x f Dre ot (r)dr+itiu(d~F ))Sd(g(O)) (5)
r

i0)=ra

where we have introduced the (4, d ) symmetric matrices
A=diaga,..d)  FU=(FD) =)

and [du] = ['[,.g ; du;. We now proceed to diagonalize the matrix 2 by means of a rotation
R; a Jacobian similar to the previous one appears:

[du] = (]‘[ dw,) (H Ju; ~ wkl)[del 61| ©)

§ <k
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where wy, ..., wy denote the eigenvalues of x4 and [8] stands for {612,...,60z-1 4} The
Gaussian functional integration can now be performed, yielding (see for instance [20])

PO, o ka) = N[ TIn =2l

i<f
x f (ﬂ dw F°(wy )) (H | ~ wn |)[del1J'[enei"“*""“"“‘”"” M
k <m
where W = diag{w;, ..., wy) and
F°(w) = ﬂ : (8)
 \sinh[Gwn?])

The function F° is the result of the integration over the endpoints v, and rg. If, on
the other hand, one imposes (before integration) the further requirement 4 = rp, one
straightforwardly obtains the distribution P°® of the moments of inertia of closed two-

dimensional Brownian paths; this distribution stems from (7) through the replacement of
F° with

. 1

Py = — e (2)] ©
sinh[%(iwt)’f‘]
(incarporating irrelevant numerical factors into N as previously). We shall henceforth denote

by F either one of the two functions F° or F¢, and by P either one of P° or P¢,
Even though the general problem has now been much simplified since the non-
polynomial dependence of the eigenvalues upon the matrix elements has been removed,
it is still no easy matter to integrate (7) for an arbitrary value of 4. To illustrate this,

we now turn (briefly) to the three-dimensional case, before describing in more detail the
two-dimensional one, Let 4 = 3 and let us write R by means of the Euler angles b, a, ¢:

R = R3(c)R2{a)R3 (D) .
One gets, after some rather tedious algebra,
tr(RWR™'A) = 3(aa’ + BB/ (3cos? a — 1) + (By' cos 2b + yB’ cos 2c) sin a)
4+ y¥'(cos 2b cos 2¢(1 + cos? a) — 2 sin 2bsin 2¢ cos a) (10)

Ja, b, c) =sina (1)

where & = (w1 +wa+w3)/3, B = Qws ~wy ~wy)/6, y = (w —wp)/2and o', B/, y' are
obtained from «, 8, ¥ by replacing w;’s with A;"s. Even though the integration over one
angle may be performed, it seems difficult to go much further in three dimensions.

In d = 2, the situation is more favourable (define 8 = 6, ;)

tr(RWR™'A) = L(w) + w2) (Mg + A2) + § cos 28(w; — wa)(Ay — Ap) (12)
J'@)=1. (13)
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The spectral distribution then reads
P(h, ha) = Nib — haf f f dwrdw, F(wr) Fwa)lwr — ws]

x Jo (§w1 — w2) (A1 — Ag)) el FuahatD) (14)

where Jp is the Bessel function of order 0. Many interesting results can be obtained from.
this general expression. (Let us note that an expression for P¢(A;, ;) has already been
obtained in [16].) Since our main purpose is to provide a description of the shape of the
paths, we are particularly interested in the distribution of the difference of the eigenvalues;
more precisely, consider the law (still denoted by P) of the random variable x = A —A2l/1,
which is a universal function since T scales as r. Integrating over A; + A2, one readily gets,
forx 20,

o0 L
Px) = Nxf dy y’}Jo(yx)(cosh\/l_y —cos4/2y) (15)
0

o0 =1
Pé(x) = Nx j; dy y2Jo(yx) (cosh\/g — cos ‘/g ) (16)

clearly P(x) =0 forx < 0.

The asymptotic behaviours of P(x) are readily cbtained: in particular, the tail of the
distribution is seen to be an exponential. When x — oo, the integral is dominated by the
small-y part:

and

o
Po(x)~x f dy y Jo(yx)(90 + yz)"% = g~V90x Qamn
0

with an anatogous form for P¢, whereas when x — Q P{x) ~ x. (These asymptotic forms
of P° and P° may be viewed as the probability laws of very elongated paths (x — oo) and
guasi-spherical ones (x — 0).)

We present in figure 1 a comparison of a numerical calculation of (15) (full curve,
representing an interpolation of 40 calculated points) and a computer simulation of open
random walks on a square lattice (full circles). We generated 10° walks of 1000 steps each.
The agreement with (15} is quite satisfying.

The profile of this distribution already provides meaningful information about the shapes
of the paths; though P°(x) decreases exponentially when x becomes large, important
deviations from sphericity are allowed for: in fact it is seen that the small values of the
difference |A; — | are suppressed in favour of values of significant magnitude (i.e. x =~ 0.1,
or [A; — Az| =~ R?, since (R%)° = /6 [21]). This is due to the level repulsion exhibited by
P°(x) for small x. One could also check that, even though the same level repulsion exists
in the closed-path case, the distribution is then thinner, leading to the expected conclusion
that closed paths are more spherical than open ones.

Thouvgh we can gain information on the typical shape of the paths just by looking at
the distribution of the difference of the eigenvalues, it would still be interesting to define a
numerical quantity characterizing the average elongation. A good candidate in this respect
is the ratio of the average distinct moments of inertia (A,.}/{A-), where A, (A.) denotes
the largest (smallest) eigenvalue of the path. The Heaviside distribution

1 40 eiux
6(x) = — f du
i Jee  H—IE
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Figure 1. Computer simulation of open random walks on a two-dimentional square lamtice,
The probability distribution P®(x) is (full circles) as a function of the scaling vasriable
X = JA; — Az|/t, where ¢ = 1000 is the number of a walk and Ay, A; are the eigenvalues

of the inertial tensor. The fufl curve represents a numerical calculation of (15).

enables us to explicitly distinguish the two eigenvalues, through the insertion of a factor

#(Ay — A} in (14). We thus obtain the characteristic function

dud? Fwy)F(w.)
W — 1€

vk by = Ny, - 35
where ws denote the eigenvalues of the matrix
py+—u  q/2
q/2  p_-+u
whence we deduce the desired ratio

Ap—A) 3G (p, p)
A +22) 33 G(p, p)

p=p'=0
where
. du
p=ps+p- P =psy—p- G(p.p)=f£ﬂw'+)”w’-)
w =p V(P —u)?+q%.
Using

L _pp (1) + ims(u)
U

u— ie

(18)

(19)

(20)

@
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we get (after some algebra) for open paths

Ay —A) Amaf®
= d = —12F° (22)
(e + 22 2m3,(/p/ sinh(e/P)) |p=0
where & = ™/ and
pa T8, (__"_.._) ~ —0,0555 (23)
o X v/coshx —cosx
leading to the value
Ay}
—— ~ 499 (24)
(A}

which is in perfect agreement with the one obtained from our computer simulations. In the
case of closed paths, one has

(g = A) 4 I°
= _ =—6I° 25
{(Agp + A} Zﬂ'ap(ﬁ/ Smh(“m)z‘p:l] @)
where
o0 2
=[S (—"__) 26)
0 X coshx —cosx
o0
_ —2!n(H(1 +e—<2p+ll:r)) @7
p={
i T
= (n2-%)
o~ —0.0848
Thus
B L 307 (28)

(=)

which is smaller than (24), as expected.

As we have aircady mentioned, another quantity of interest is the square radius of
gyration; the lafter is obviously a measure of the size of a walk, and conveys no information
whatsoever about its shape. It is nevertheless interesting to compare its distribution g with
those of the differences of eigenvalues, as shown in figure 1. All the more so as it may
be expressed quite generally under a relatively simple form. Here we consider the random
variable

1 d
z=- > (29)
i=1 ;
d now being arbitrary, and compute the Laplace transform I'y{p) = {e~7*}. One has
riti=rg . . df2
Iﬂg(p) m— N fddf,\ddrdek Dr e-jgdr{r1+prz+1k-rl — ( . ’\/E ) (30)
rOi=ra sinh ./p
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and

d
re(p) = (—?/sﬁnh _‘/Z_ﬁ) =T (g) : 30

It remains to compute the inverse transforms of (30))and (31}):

| o
Quz) = 7— ‘/: o dp Fa(p)e? . (32)
One has, by virtue of (31),
Q4(z) =4 03,42) (33)
(using this result, we can immediatlly check the long known [22,21] formula (R?*)® =

1/2{R*)°); moreover Q9 can be expressed as a series for even d, and QS for any d. For
instance, we get (setting z’ = 72z and still denoting by Q the law of z')

Qg(z’) = 29(21) Z(__I)n-!-lnze-—nzz' (34)
n=1

05(z') = 86(z) Y n*(8n*7 — )™, (35)
n=1

(An analytical expression for 03(z) was first obtained in [7]; see also [25] for the derivation
of the equivalent of (35) in another context.) As was already noticed [5], & exhibits a non-
analytical behaviour near the origin; for instance,

+izo , .
Q3(z") ~ f dp e 7 VPP g (36)

v, .
=0 ico

Rescaling z to z" = z/d, we can investigate the limit 4 — oo:

dr

(eP") = (\E / sinh\/g) — e™P/12 (37)
yielding

052" djoob‘ (2" — 35) (38)
while

Q" = 8(2"—%). (39)

This shows that the variable z” becomes more and more peaked about its average value
when the number of dimensions increases. In fact, all meaningful quantities are expected to
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Figure 2. Computer simulation of closed random walks on a two-dimensional square lattice.
The probability distributions (2) S{A), () R(¥), (¢} @°(z) are plotted (full circles) as functions
of the scaling variables A = A/fr, y = /A1Ag/t and z = {A] + Az|/t, where ¢ = 5000 is
the number of steps of a walk, 4 is the arithmetic area enclosed by a watk and Ay, A; are
the eigenvalues of the inertial tensor. The full curve represents a numerical caleulation of (35}
{z' = x%z). The area .4 appears to be better correlated with y than with z. See text for more
detailed explanations.

have a simple limit when 4 becomes large; for instance, the values of the average moments
of inertia in large dimensions have been computed as a series in 1/d [17).

We finally examing the issue of the arithmetic area A enclosed by the closed planar
Brownian path. The latter is very difficult to evaluate and analytical derivation of its
probability law is still an open problem [23]. However, it is natural to expect that the area
enclosed has something to do with the moments of inertia A; and A2, and there are indeed
numerical indications of this, Let us investigate the correlations between A = A/t and
the variables z = (A + A2)/t and y = /A |A2/1; clearly A would be exactly proportional
to z if the path uniformly filied a disk, and to y if it uniformly filled the interior of an
ellipse. The distributions of A, z and y are displayed in figure 2. The law of the area is
obtained by generating 200000 walks of 5000 steps on 2 square lattice and computing A
for each walk by means of a site-bond percolation algorithm [24]; the other laws plotted
are also simulation results (full circles), and that of z is seen to coincide with the analytical
expression (33) (full curve). Comparing the three distributions, one notices that the law
of A is more similar to that of y than to that of z, as could be expected. The correlation
coefficients are
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Car076  Cj,~087. (40)

There is of course no linear relation between those variables, but it is noteworthy that
the arithmetic area, which takes into account every detail of the ‘tortured’ history of the
Brownian path, should be so well approximated by the area enclosed by the *inertial ellipse’,
a smoothed (and far simpler to evaluate} quantity. This might prove an interesting remark
in the light of some recent attempts to use closed pressurized Brownian paths as a model
for two-dimensional vesicles [25-28], as the enclosed area, being the conjugate variable to
osmotic pressure, plays an important role in such a model.

After the completion of this paper, our attention was brought to reference [27], in which

the form of P5(A), Az) (expression (14} with F = F° taken from (%)) has been independently
derived.
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