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Abstract. We cnmpufe the joint probability law of lhe principal moment9 of inertia of Brownian 
paths (open or closed), using consmined path integrals and random malrix theory. The case of 
two-dimensional pafhr is discussed in detail. In particular. we show Ihat the mtio of the average 
values of the largest and smallest momenu is equal to 4.99 (open paths) and 3.07 (closed palhs). 
We also present result9 of numerical simulations. which include investigation of the relationships 
between the momenu of inenia and the arithmetic area enclosed by a path. 

The shape of a typical random walk is far from spherical. as was first noticed long ago [l]. 
The precise amount of this anisotropy is likely to be of importance in the hydrodynamics 
of dilute polymer fluids, especially for times less than the largest relaxation time of a single 
chain; in this regime, the relevant variable is the instantaneous shape of the molecule, 
rather than an average over all the orientations that the latter takes over a longer period 
of time [2,3]. Indeed the velocity spectra of certain laminar polymeric flows exhibit 
fluctuations which are manifestly non-turbulent; it has been argued [4] that these velocity 
fluctuations can be accounted for if one drops the assumption of a spherical polymer 
configuration, replacing it with a prolate ellipsoidal ansatz. It is clear that the motion 
of an elongated molecule will be somewhat different from that of a spherical one, because 
the flow will make it  flip around itself. As to the origin of this prolate shape. it cannot 
be attributed wholly to a dynamical effect, since in some of the flows considered in [41 
no deformation of spherical molecules is expected. Hence non-sphericity must already be 
present at the static level (though the precise instantaneous shape of the molecule is of 
course affected by the flow, e.g. the ellipsoid can compress and stretch along its axis). 
Thus an obvious prerequisite of the phenomenological description of polymer flows is the 
knowledge of the average shape of a chah at rest 

In order to get information on the latter, a quantitative measure of ‘shape’ is needed. The 
best candidate is the inertial tensor T ,  or more precisely T up to the orientations of the chain, 
i.e. the set of its eigenvalues A,, . . . , b. However, the computation of their probability 
law P ( A l ,  . . . , Ad) is in general a difficult task. The problem is greatly simplified when one 
adopts the less ambitious approach of defining shape using only polynomial invariants of T,  
namely the symmetric polynomials of A I ,  . . . ,Ad, the simplest example of which is of course 
tr(T) = R2, the square radius of gyration of the chain. A variety of results concerning the 
distributions of R2 [SI and its orthogonal components [6-8] in fixed or random axes has 
been obtained in d = 3, and linear combinations of those components have been used to 
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investigate the anisotropy of random walk chains [9]. Combining RZ with other invariants 
of T, it is possible to improve on this and provide better characterizations of the shape 
of a walk, defining quantities known as asphericity, acylindricity, etc [1&12], the average 
values of which are more easily computed than those of the eigenvalues themselves. For 
instance, the average asphericity of a Brownian path is known in any dimension [ I I ,  121 
and may be compared with simulation results 19-15]; the ratios of the average values ofthe 
principal moments of inertia Ai have been computed numerically in d = 3, for paths either 
open or closed [14, 151. The more difficult problem of the self-avoiding path was tackled 
in [ 121 through renormalization group methods and the invariants computed in dimension 
4 - e : the excluded-volume effects have also been studied numerically (3,12151. As 
regards the A, themselves, their law has been expressed analytically in d = 2 for closed 
paths [16,27], whereas in higher dimensions only numerical or asymptotic (in l/d) results 
have been obtained so far [171. 

Here we address the issue of determining the probability law P(A1, . . . ,Ad)  of the 
moments of inertia of a Brownian path, open or closed. Part of this law can easily be 
deduced from the fact that T is a random symmetric real matrix. We then obtain, using 
a path-integral representation, the whole law, from which we deduce the integrated laws 
P(A+ - A-) (d = 2, A+ (A-) being the largest (smallest) eigenvalue of T) and Q(Rz) ;  
these laws may be computed numerically and exact moments and asymptotic behaviours 
may be extracted. Furthermore, it turns out that in two dimensions the ratio (A+)/(A-). 
which obviously constitutes a straightforward measure of anisotropy, may be computed 
exactly . All our results are compared with simulations obtained by generating (open or 
closed) random walks on a lattice. We also numerically examine the law of the arithmetic 
area enclosed by a path and argue that the latter is not unrelated to the distribution of the 
moments of inertia. 

We first address the problem in an arbitrary number of dimensions d and consider the 
inertial tensor T = (zj), 1 < i, j < d of an open Brownian path of length t (i.e. a 
continuous map v : IO, t ]  + Rd).  The probability distribution PD(T) can be written as a 
constrained path integral 1181: 
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where N is a normalization constant, and 
I 

hj = f 1' dr(xj(t) - xoi)(xj(r)  - x G ~ )  - K j  g = i ! dr r ( r )  - rc (2) 

where xi and X G ~  are the components of T and TG; the diffusion constant is taken equal 
t o  

I to 5 .  
Using translational invariance we rewrite ( I )  in the more symmetric form 

(the constraints and gIo1 are obtained by setting rc = 0 in (2)). 
The inertial tensor T of the random path T is a random positive symmetric matrix; 

moreover, the rotational invariance of the distribution of the Brownian paths ensures that 
the matrices T make up an orthogonal ensemble. This ensemble is obviously not the so- 
called 'Gaussian orthogonal ensemble' (ax) 1191 since the law of the Fj's is not Gaussian 



Moments of inertia and shapes of Brownian paths 7255 

and they are not all independent. However, it shares with GOE a general property of 
orthogonal ensembles, namely the well known 'level repulsion' [ 191. One can indeed 
perform in (3) the change of variables (Z j )  + (AI, . . . , Ad, 81.2, . . . , ed-1.d). where the Ai's 
are the d eigenvalues of T and the 0, are the d(d - l)/2 angles involved in the rotation 
diagonalizing T. A Jacobian will then show up in the expression of Po(T), namely 

a q l  . . . 8Td.d aT1.*. . . a ~ ~ - ~ . ~  
ah1 . . .and ae1.2.. . a8d-l.d 

which is a polynomial of degree d(d - 1)/2 in AI,. . . , hd since the derivatives with respect 
to A I ,  . . . , Ad yield d columns involving no Ai's, and the remaining columns are linear in 
the latter. Now it is clear that this polynomial will vanish whenever two of the eigenvalues 
are equal, because in that case the change of variable is ambiguous. only defined up to a 
rotation in the (at least) two-dimensional corresponding eigenspace; hence the Jacobian is 
just 

n@i - Aj)J ' ( 'A,z , .  . . , ed-i,d) 
i c j  

where J' is in general a complicated function. (The prefactor is what is generally referred 
to as level repulsion. Let us emphasize again the fact that such a prefactor occurs in 
the distribution of the eigenvalues of any orthogonal ensemble of random matrices; as a 
consequence, it would also be present in the law of the inertial tensor of self-avoiding walks, 
Levy flights, etc.) In our case however the form of J' is irrelevant: since the T's form an 
oahogonal ensemble, there is in the integrand no further dependence on the angles besides 
J'. Hence the angular integration reduces to a numerical factor which may be absorbed 
into the constant N, finally yielding the law of the eigenvalues: 

Po(Ag, ..., Ad) = N n l A i  -AjI/ddrAddr~ 
i < j  

(f;!' is obtained by setting r~ = 0, T = 0 in fii (2)). The identity 6 ( x )  = I / k  I-'," da eiur 
enables one to rewrite (4) in terms of the evolution operator in a harmonic potential: 

where we have introduced the (d ,  d )  symmetric matrices 

A = diag(Al,. . . , Ad) F"' = (fi:.") fi = (fiij) 

and [dfil= nj, df i i j .  We now proceed to diagonalize the matrix fi by means of a rotation 
R;  a Jacobian similar to the previous one appears: 



77.56 

where WI. .  . . , w d  denote the eigenvalues of f i  and [el stands for (61.z.. , . .6d- l .dt .  The 
Gaussian functional integration can now be performed, yielding (see for instance [ZO]) 
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The function Fo is the result of the integration over the endpoints TA and re. If, on 
the other hand, one imposes (before integration) the further requirement PA = ~ g .  one 
straightforwardly obtains the distribution PE of the moments of inertia of closed two- 
dimensional Brownian paths; this distribution stems from (7) through the replacement of 
FD with 

(incorporating irrelevant numerical factors into N as previously). We shall henceforth denote 
by F either one of the two functions F0 or F C ,  and by P either one of Po or Pc. 

Even though the general problem has now been much simplified since the non- 
polynomial dependence of the eigenvalues upon the matrix elements has been removed, 
it is still no easy matter to integrate (7) for an arbitrary value of d .  To illustrate this, 
we now turn (briefly) to the three-dimensional case, before describing in more detail the 
two-dimensional one. Let d = 3 and let us write R by means of the Euler angles b,a, c: 

R = Rdc)Rzfa)R3(b) .  

One gets, after some rather tedious algebra, 

tr(RWR-'A) = 3(a(u'+pp'(3cos2a - 1)+(By'cos2b+y~'cos2c)s inZn)  

i- yy'(cos26 cos2c( 1 + cos2 a) - 2sin 2bsin 2ccosa) (10) 

(11) 

where CY = ( W I  t w z  + w3)/3,  p = ( 2 ~ 3  - WI - w2)/6, y = ( W I  - w 2 ) / 2  and a', B', y' are 
obtained from a, p, y by replacing w i ' s  with Ai's. Even though the integration over one 
angle may be performed, it seems difficult to go much further in three dimensions. 

J'(a,  b, c)  = sina 

In d = 2, the situation is more favourable (define 6 = 61.2): 

tr(RWR-'A) = ~ ( W I  + w2)(2.1 + A * )  + 
J'(6) = 1 .  (13) 

C O S ~ ~ ( W I  - WZ)(AI - Az) (12) 
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The spectral distribution then reads 

P ( h , A z )  = NIL1 - A21 ~ W I ~ W F ( W ) F ( W ) I W ~  - ~ 2 1  

j0 (;(wl - w z ) ( ~ l  - i2)) eji(u~i+wrJ(ArfAd (14) 

where JO is the Bessel function of order 0. Many interesting results can be obtained from 
this general expression. (Let us note that an expression for Pc(A,,  A*) has already been 
obtained in 1161.) Since our main purpose is to provide a description of the shape of the 
paths, we are particularly interested in the distribution of the difference of the eigenvalues; 
more precisely, consider the law (still denoted by P )  of the random variable x = p.1 -Az[/ t ,  
which is a universal function since T scales as t. Integrating over A, t A2. one readily gets, 
for x 0, 

/I 

W 

P"(x) = Nx l dy y* Jo(yx)(cosh& - c o s m - +  

and 

P c ( x )  = Nx lW dy y ' J O ( y ~ ) ( c o s h ~ - c o s ~ ) - '  

clearly P(x) = 0 for x .c 0. 
The asymptotic behaviours of P ( x )  are readily obtained in particular, the tail of the 

distribution is seen to be an exponential. When x + 03, the integral is dominated by the 
small-y part: 

Po(x) - x lm dy y Jo(yx)(90 + y2)-i = e-mx (17) 

with an analogous form for Pe,  whereas when x + 0 P ( x )  x .  (These asymptotic forms 
of P o  and PE may be viewed as the probability laws of very elongated paths (x -+ CO) and 
quasi-spherical ones (x --f O).) 

We present in figure 1 a comparison of a numerical calculation of (15) (full curve, 
representing an interpolation of 40 calculated points) and a computer simulation of open 
random walks on a square lattice (full circles). We generated IO6 walks of loo0 steps each. 
The agreement with (15) is quite satisfying. 

The profile of this distribution already provides meaningful information about the shapes 
of the paths; though P"(x)  decreases exponentially when x becomes large, important 
deviations from sphericity are allowed for in fact it is seen that the small values of the 
difference IAl -A21 are suppressed in favour of values of significant magnitude (i.e. x N 0.1, 
or [A1 - 2.21 N R2, since (R2)" = I/6 [21]). This is due to the level repulsion exhibited by 
Po(,) for small x. One could also check that, even though the same level repulsion exists 
in the closed-path case, the distribution is then thinner, leading to the expected conclusion 
that closed paths are more spherical than open ones. 

Though we can gain information on the typical shape of the paths just by looking at 
the distribution of the difference of the eigenvalues, it would still be interesting to define a 
numerical quantity characterizing the average elongation. A good candidate in this respect 
is the ratio of the average distinct moments of inertia ( A + ) / ( L ) .  where At (A-) denotes 
the largest (smallest) eigenvalue of the path. The Heaviside distribution 

e(x) =- du- 
2ni S'" -m U - L  eiux 
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Figure 1. Computer simulation of open random walks on a two-dimentional square lattice. 
The probability disvibution P Y X )  is (full circles) as a function of the scaling vasriable 
x = lp.1 - i 2 l / t ,  where I = IOW is ihe n o m k  of a wak and ).,.A2 are the eigenvalues 
of the inertial tensor. The full curve represene a numerical calculation of (15). 

enables us to explicitly distinguish the two eigenvalues, through the insertion of a factor 
O(A, - A-) in (14). We thus obtain the characteristic function 

where w* denote the eigenvalues of the matrix 

p - + U  

whence we deduce the desired ratio 

where 

w; = p i  J(p'- u ) 2 + q 2 .  

Using 
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we get (after some algebra) for open paths 

where ff = einI4 and 

leading to the value 

which is in perfect agreement with the one obtained from our computer simulations. In the 
case of closed paths, one has 

where 

= - - ( 1 n 2 - - )  I x 

2 6 
Z= -0.0848. 

Thus 

which is smaller than (24). as expected. 
As we have already mentioned, another quantity of interest is the square radius of 

gyration; the latter is obviously a measure of the size of a walk, and conveys no information 
whatsoever about its shape. It is nevertheless interesting to compare its distribution Q with 
those of the differences of eigenvalues, as shown in figure 1. All the more so as it may 
be expressed quite generally under a relatively simple form. Here we consider the random 
variable 

d now being arbitrary, and compute the Laplace transform r d ( p )  = (e-J’z). One has 
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and 
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It remains to compute the inverse transforms of (30))and (31): 

* r i i m  

One has, by virtue of (31). 

Q',(L) = 4 QL(42) (33) 

(using this result, we can immediatlly check the long known [22,21] formula (R')' = 
l/2(Rz)"); moreover Q: can be expressed as a series for even d .  and Q; for any d .  For 
instance, we get (setting L' = $2  and still denoting by Q the law of 2') 

m 
Q;(Z')  = 2eg7 C(-I)"+ln'e-nz2' (34) 

"=I 

m 
Q',(z') = S O @ ' )  Cn2(8n22' - 3)e-4"2z'. 

"=l 
(35) 

(An analytical expression for Q;(z )  was first obtained in [7]; see also [25] for the derivation 
of the equivalent of (35) in another context.) As was already noticed [5], Q exhibits a non- 
analytical behaviour near the origin; for instance, 

Rescaling z to z" = z /d ,  we can investigate the limit d -+ CO: 

y i e I di n g 

e:(?') -+ 6 (2" - A) 
d-m 

while 

Q;(z") + S (z" - &) 
d-m 

(39) 

This shows that the variable z" becomes more and more peaked about its average value 
when the number of dimensions increases. In fact, all meaningful quantities are expected to 
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F i r e  2. Computer simulation of closed random walk% on a two-dimensional square lauice. 
The probability distributions (a) S(A) .  (b) R ( y ) .  (c) @(z) are plotled (full circles) as functions 
of the scaling variables A = A/r, y = m/l and z = lil + Az1/1. where I = So00 is 
the number of steps of a walk, A is the arithmetic area enclosed by a walk and A I .  h2 are 
the eigenvalues of the ineziial tensor. The full curve represents a numerid calculation of (35) 
(I' = dz). The area A appears to be better conelated with y than with 1. See text for more 
detailed explanations. 

have a simple limit when d becomes large; for instance, the values of the average moments 
of inertia in large dimensions have been computed as a series in I/d [17]. 

We finally examine the issue of the arithmetic area A enclosed by the closed planar 
Brownian path. The latter is very difficult to evaluate and analytical derivation of its 
probahiliry law is still an open problem [23]. However, it  is natural to expect that the area 
enclosed has something to do with the moments of inertia AI  and A t ,  and there are indeed 
numerical indications of this. Let us investigate the correlations between A = A/! and 
the variables z = (AI + hz)/t and y = m/?: clearly A would be exactly proportional 
to z if the path uniformly filled a disk, and to y if it uniformly filled the interior of an 
ellipse. The distributions of A,  z and y are displayed in figure 2. The law of the area is 
obtained by generating 200000 walks of 5000 steps on a square lattice and computing A 
for each walk by means of a site-bond percolation algorithm [24]; the other laws plotted 
are also simulation results (full circles), and that of z is seen to coincide with the analytical 
expression (35) (full curve). Comparing the three distributions, one notices that the law 
of A is more similar to that of y than to that of z, as could be expected. The correlation 
coefficients are 
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C h  2 0.76 C A ~  Y 0.87. (40) 

There is of course no linear relation between those variables, but it is noteworthy that 
the arithmetic area, which takes into account every detail of the 'tortured' history of the 
Brownian path, should be so well approximated by the areaenclosed by the 'inertial ellipse', 
a smoothed (and Far simpler to evaluate) quantiq. This might prove an interesting remark 
in the light of some recent attempts to use closed pressurized Brownian paths as a model 
for two-dimensional vesicles [25-281, as the enclosed area, being the conjugate variable to 
osmotic pressure, plays an important role in such a model. 

After the completion of this paper, our attention was brought to reference /27], in which 
the form of P;(AI, Az) (expression (14) with F = FC taken from (9)) has been independently 
derived. 
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